The optimal power mean bounds for two convex combinations of A-G-H means

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

we find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} c(a,b)+(1-alpha_{1} )h(a,b)

متن کامل

Optimal Convex Combinations Bounds of Centroidal and Harmonic Means for Weighted Geometric Mean of Logarithmic and Identric Means

In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved. We find the greatest value λ(α) and the least value Δ(α) for each α ∈ (0,1) such that the double inequality: λC(a,b)+(1−λ)H(a,b) < Lα (a,b)I1−α (a,b) < ΔC(a,b)+(1−Δ)H(a,b) holds for all a,b > 0 with a = b. Here, C(a,b), H(a,b) , L(a,b) and I...

متن کامل

Optimal Bounds for Neuman-Sándor Mean in Terms of the Convex Combinations of Harmonic, Geometric, Quadratic, and Contraharmonic Means

and Applied Analysis 3 Theorem 1.1. The double inequality α1H a, b 1 − α1 Q a, b < M a, b < β1H a, b ( 1 − β1 ) Q a, b 1.7 holds for all a, b > 0with a/ b if and only if α1 ≥ 2/9 0.2222 . . . and β1 ≤ 1−1/ √ 2 log 1 √ 2 0.1977 . . . . Theorem 1.2. The double inequality α2G a, b 1 − α2 Q a, b < M a, b < β2G a, b ( 1 − β2 ) Q a, b 1.8 holds for all a, b > 0with a/ b if and only if α2 ≥ 1/3 0.3333...

متن کامل

The Optimal Upper and Lower Power Mean Bounds for a Convex Combination of the Arithmetic and Logarithmic Means

and Applied Analysis 3 Lemma 2.1. If α ∈ 0, 1 , then 1 2α log 2 − logα > 3 log 2. Proof. For α ∈ 0, 1 , let f α 1 2α log 2 − logα , then simple computations lead to f ′ α 2 ( log 2 − 1 − 2 logα − 1 α , 2.1 f ′′ α 1 α2 1 − 2α . 2.2 From 2.2 we clearly see that f ′′ α > 0 for α ∈ 0, 1/2 , and f ′′ α < 0 for α ∈ 1/2, 1 . Then from 2.1 we get f ′ α ≤ f ′ ( 1 2 ) 4 ( log 2 − 1 < 0 2.3 for α ∈ 0, 1 ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2012

ISSN: 1846-579X

DOI: 10.7153/jmi-06-03